TABLE I continued

Water-powder ratio	Control	Impregnated	Strength factor
0.50	0.74	2.78	3.75
0.60	0.67	2.98	4.45
0.70	0.40	2.75	6.88
0.80	0.32	1.41	4.40

(e) Abrasion resistance % weight loss						
Water-powder ratio	Control	Impregnated	Strength factor			
0.50	6.4	0.9	7.1			
0.60	8.6	1.1	7.8			
0.70	9.2	1.7	5.4			
0.80	9.3	1.9	4.9			
(f) Polymer load	ings					
Water-powder ratio		% Polymer absorbed				
0.50		21.9	······			
0.60		28.3				
0.70		35.4				
0.80		41.7				

References

- 1. R. EARNSHAW, and D. C. SMITH, Austral D. J. 11 (1966) 415.
- S. TOREKOG, R. W. PHILIPS, and R. J. SCHNELL, J. Pros. Den. 16 (1966) 119.
- 3. R. W. EARNSHAW, Austral. D. J. 21 (1976) 160.
- 4. Idem, J. Mater. Sci. 8 (1973) 911.
- 5. J. PEARCE-WHITTAKER, and P. H. JACOBSEN, British Patent Application (1977).
- 6. T. O. MULHEARN and L. E. SAMUELS Wear 5 (1962) 478.

Received 19 September and accepted 1 November 1977.

5.4
4.9
ymer absorbed
<u></u>

Correlations between oxygen transport phenomena in non-crystalline silica

The mobility of oxygen in fused silica is evident in a variety of phenomena such as permeation of O_2 gas, oxidation of silicon surfaces, and O_2/SiO_2 isotope exchange. However, a mechanistic relationship between all these processes has not yet been presented. The formation of amorphous silica scales during oxidation of silicon is known to be rate-controlled by permeation of molecular O_2 through the SiO_2 layer [1]. On the other hand, oxygen tracer diffusion coefficients as measured by isotopic exchange techniques are said to be uncorrelated to O₂ diffusion-controlled phenomena [2]. However, there should be a common underlying mechanism for the transport of oxygen because all the processes have uniformly low activation energies, depend linearly on the partial pressure of oxygen (p_{O_1}) , as well as having algebraic relationships between their respective rate laws. All these observations can be understood if the transport of oxygen involves the interaction of O_2 molecules dissolved in SiO₂ with oxygen of the silica network (lattice oxygen).

Haul and Dümbgen [3] were the first to relate permeability of O_2 gas to diffusion coefficients measured by gas/solid isotope exchange. In their model interstitially dissolved O_2 acts as a defect by which lattice oxygen migrates. The diffusion of lattice oxygen (D_0) then, can be related to O_2 permeability (P_{O_2}) ,

by

$$P_{O_2} = D_{O_2} c_{O_2} / 7.6 \tag{1}$$

$$D_{\rm O} = D_{\rm O_2} c_{\rm O_2} / c_{\rm O} = 7.6 P_{\rm O_2} / c_{\rm O}$$
 (2)

where P_{O_2} is in units of cm³ gas (STP) sec⁻¹ for a 1 mm thick wall, 1 cm² area at 10 Torr gas pressure difference; D_{O_2} is the diffusion coefficient of molecular oxygen in cm² sec⁻¹; c_{O_2} and c_O are the concentrations of oxygen in units of cm³ gas (STP) per cm³ solid for dissolved O₂ and lattice oxygen in SiO₂ respectively.

The oxidation rate of silicon to silica (parabolic regime) is correlated with O_2 permeability [4], because the oxidation proceeds by diffusion of dissolved O_2 through the SiO₂ layer to the SiO₂/Si interface. Dankwerts [5] has shown that parabolic oxidation of surfaces can be described by a rate constant:

© 1978 Chapman and Hall Ltd. Printed in Great Britain.

$\overline{D_{\mathbf{O}}, k_{\mathbf{O}} (\mathrm{cm}^2 \mathrm{sec}^{-1})}$	Q (kcal mol ⁻¹)	Т (°С)	Pressure dependence	Reference
¹⁸ O-tracer diffusion (D_O	.)			
2.0×10^{-9} (4.4 ± ¹⁴ ₃) × 10 ⁻¹¹	29.0 ± 2.0 ± 2.0 19.7 ± 4.0	850-1250 1150-1430	$D_{O} \propto p_{O_2}$	[6] [7]
O_2 permeation (P_{O_2})				
	31.4 22.0*	840-940 900-1100	$\overline{P}_{\mathbf{O}_2} \propto p_{\mathbf{O}_2}$	[8] [9]
O_2 diffusion (D_{O_2})				
2.8×10^{-4} [†]	27.0	900-1100		[10]
Parabolic rate constant f	or oxidation of silicon in O	$_{2}(k_{\rm SiO_{2}})$		
2.0 × 10 ⁻⁹ ‡ 2.0 × 10 ⁻⁹	28.5 31.0	8001200 9001150	$k_{SiO_2} \propto p_{O_2}$ $k_{SiO_2} \propto p_{O_2}$ flow system	[1] [11]
$1.0 imes 10^{-10}$	23.0	950-1100	$k_{SiO_2} \propto p_{O_2}$ manostatic	[11]
1.2×10^{-9}	27.6	900-1300	_ r.f. heating	[12]
1.1 × 10 ⁻⁹	28.0	900-1250	– resistance heating	[12]

TABLE I Comparison between 18 O-tracer diffusion, oxygen permeation, oxygen diffusion in SiO $_2\,$ glass, and oxidation of silicon

 $D_{\mathbf{O}}, k_{\mathbf{O}} \stackrel{\circ}{=} \text{pre-exponential factor}, Q \stackrel{\circ}{=} \text{activation energy}$

*Revised value 27 kcal mol⁻¹ [10].

[†]Calculated from data given in [10].

‡Calculated from data given in [1].

$$k_{\rm SiO_2} = 2D_{\rm O_2} c_{\rm O_2} / c_{\rm O}, \qquad (3)$$

provided that the solubility of O_2 is sufficiently small, i.e. $c_{O_2} \ll c_{O^*}$; k_{SiO_2} is in units of cm² sec⁻¹.

Equations 1 to 3 show clearly that D_0 , D_{O_2} , P_{O_2} and k_{SiO_2} are all interdependent and that the equations can be rearranged. For instance, P_{O_2} and k_{SiO_2} are solely dependent on tracer oxygen diffusivity (D_0) in SiO₂.

$$P_{0_{\gamma}} = c_0 D_0 / 7.6 \tag{4}$$

$$k_{\rm SiO_2} = 2D_0 \tag{5}$$

Thus tracer diffusion studies are in fact more useful in elucidating oxygen transport processes than was stated by Meek [2].

It follows from Equations 4 and 5 that P_{O_2} , k_{SiO_2} , and D_O should have the same temperature dependence. D_{O_2} is expected to have that same temperature dependence (see Equation 2) but reduced by the heat of solution of O_2 in SiO₂,

which, however, is small [10]. Table I lists data from the literature which show that the four rates do have the same low activation energies (20 to 30 kcal mol⁻¹) within experimental error. Not included in Table I are experiments which show higher activation energies of 71 [13] and 55 kcal mol^{-1} [3] for tracer diffusion because they were influenced by phase-boundary reactions [6, 7]. Table I also shows that oxygen transport in SiO₂ is directly proportional to p_{O_2} , in marked contrast to the $p_{O_2}^{-1/2}$ dependence found for oxygen diffusion in K_2O-SiO_2 glasses [14]. The mechanism of oxygen transport must therefore differ when network-modifying cations are present in the SiO_2 network. Diffusion in the multicomponent silicates occurs not via interstitially dissolved O_2 molecules as in pure SiO₂, but via oxygen vacancies [14]. The activation energies of oxygen diffusion in silicate glasses [14] are much higher than that of SiO₂ glass because diffusion by oxygen vacancies requires the

 $^{{}^{*}}c_{O_{2}}$ (900 to 1100° C) = (1.7 to 2) × 10⁻³ cm³ gas (STP) per cm³ SiO₂ [10] $c_{O} = 821$ cm³ gas (STP) per cm³ SiO₂, i.e. $c_{O_{2}}/c_{O} = 2.1 \times 10^{-6}$

breaking of Si–O bonds. The outlined diffusion mechanism in SiO₂ also seems to hold for high temperature (1100 to 1500° C) corrosion of SiC and Si₃N₄ during which SiO₂ layers form. Activation energies of 20 to 30 kcal mol⁻¹ were observed in the oxidation (parabolic regime) of SiC [15, 16] and around 25 to 35 kcal mol⁻¹ for pure Si₃N₄ [17, 18]. The activation energy for the oxidation of impure Si₃N₄ increases with impurity content [19]. Instead of pure SiO₂, the impure Si₃N₄ forms silicate glass layers that presumably have higher activation energies of tracer oxygen diffusion.

Acknowledgement

This work was supported in part by NATO Research Grant 1019.

References

- 1. B. E. DEAL and A. S. GROVE, J. Appl. Phys. 36 (1965) 3770.
- 2. R. L. MEEK, J. Amer. Ceram. Soc. 56 (1973) 341.
- 3. R. HAUL and G. DÜMBGEN, Z. Elektrochem. 66 (1962) 636.
- 4. K. MOTZFELDT, Acta Chem. Scand. 18 (1964) 1596.
- 5. P. V. DANKWERTS, Trans. Faraday Soc. 46 (1950) 701.
- E. L. WILLIAMS, J. Amer. Ceram. Soc. 48 (1965) 190.
- 7. K. MUEHLENBACHS and H. A. SCHAEFFER, Can. Mineral. 15 (1977) 179.
- 8. R. M. BARRER, J. Chem. Soc. (London) (1934) 378.

Kinetics of solid state $NiFe_2O_4$ formation at 700 to 1400° C

Ferrites are fabricated by heating powders, and many processing variables, e.g. powder purity, size distribution, type, etc., effect the reaction rate [1]. Activation energies for NiO + Fe₂O₃ = NiFe₂O₄ have varied from 105 and 185 kJ mol⁻¹ [2] and 225 to 293 kJ mol⁻¹ [3]. In the present work spectrographically pure (J. Matthey) NiO and Fe₂O₃ with sieved particle sizes of 15.6 to 33.0 μ m were used. Equimolar amounts were mixed by hand for over 1 h, pressed in a steel die without binder or lubrication to form a pellet 10 mm diameter and 4 mm thick, placed in a recrystallized alumina boat, and fired in air within a temperature variation of $\pm 3^{\circ}$ C. The amount of

- 9. F. J. NORTON, Nature 191 (1961) 701.
- F. J. NORTON, Transactions of the VIII Vacuum Symposium and 2nd International Congress (Pergamon Press, New York, 1962) p. 8.
- 11. P. J. BURKHARDT and L. V. GREGOR, *Trans. Met. Soc. AIME* 236 (1966) 299.
- 12. A. G. REVESZ and R. J. EVANS, J. Phys. Chem. Solids 30 (1969) 551.
- 13. E. W. SUCOV, J. Amer. Ceram. Soc. 46 (1963) 14.
- 14. H. B. MAY, I. LAUDER and R. WOLLAST, *ibid.* 57 (1974) 197.
- 15. P. J. JORGENSEN, M. E. WADSWORTH and I. B. CUTLER, *ibid.* 42 (1959) 613.
- 16. E. GUGEL, H. W. HENNICKE and P. SCHUSTER, Ber. Dt. Keram. Ges. 46 (1969) 481.
- P. GOURSAT, P. LORTHOLARY, D. TETARD and M. BILLY, Proceedings of the Seventh International Symposium on the Reactivity of Solids (Chapman and Hall, London, 1972).
- E. FITZER and R. EBI, "Silicon Carbide-1973" (University of South Carolina Press, Columbia, SC, 1974).
- 19. S. C. SINGHAL, J. Mater. Sci. 11 (1976) 500.

Received 19 September and accepted 1 November 1977

> H. A. SCHAEFFER Institut für Werkstoffwissenschaften (Glas und Keramik), Universität Erlangen-Nürnberg, Erlangen, Germany K. MUEHLENBACHS Department of Geology, University of Alberta, Edmonton, Alberta, Canada

NiFe₂O₄ formed was measured by the force in a magnetic field. Chamfered pole pieces of an electromagnet gave a region of constant field gradient and a double pan chemical balance was used to measure the force. A phosphor bronze cantilever was used to prevent the specimen being attracted to either pole. Its stiffness could be neglected during weighing when the specimen returned (checked by a cathetometer) to a null position. A Cu specimen holder was used to hold about 100 mg powdered sample. The force per unit mass of sample versus mol% NiFe₂O₄ in a range of NiO, Fe₂O₃ and NiFe₂O₄ mixtures was linear and used to determine the unknown amount of NiFe₂O₄ in a sample.

Compacting pressures in the range 10 to 100 MPa did not affect the amount of $NiFe_2O_4$ © 1978 Chapman and Hall Ltd. Printed in Great Britain.