TABLE I continued

References

- 1. R. EARNSHAW, and D. C. SMITH, *Austral D. J.* 11 (1966) 415.
- 2. S. TOREKOG, R. W. PHILIPS, and R. J. SCHNELL, *J. Pros. Den.* 16 (1966) 119.
- *R. W. EARNSHAW, Austral.* D. J. 21 (1976) 160. *3,*
- *Idem, J. Mater. Sci.* 8 (1973) 911. *4.*
- J. PEARCE-WHITTAKER, and P. H. JACOBSEN, British Patent Application (1977). *5.*
- 6. T.O. MULHEARN and L. E. SAMUELS *Wear 5* (1962) 478.

Received 19 September and accepted 1 November 1977.

Correlations between oxygen transport phenomena in non-crystalline silica

The mobility of oxygen in fused silica is evident in a variety of phenomena such as permeation of $O₂$ gas, oxidation of silicon surfaces, and O_2/SiO_2 isotope exchange. However, a mechanistic relationship between all these processes has not yet been presented. The formation of amorphous silica scales during oxidation of silicon is known to be rate-controlled by permeation of molecular O_2 through the $SiO₂$ layer [1]. On the other hand, oxygen tracer diffusion coefficients as measured by isotopic exchange techniques are said to be uncorrelated to O_2 diffusion-controlled phenomena [2]. However, there should be a common underlying mechanism for the transport of oxygen because all the processes have uniformly low activation energies, depend linearly on the partial pressure of oxygen (p_0) , as well as having algebraic relationships between their respective rate laws. All these observations can be understood if the transport of oxygen involves the interaction of O_2 molecules dissolved in SiO_2 with oxygen of the silica network (lattice oxygen).

Haul and Dümbgen $[3]$ were the first to relate permeability of $O₂$ gas to diffusion coefficients measured by gas/solid isotope exchange. In their model interstitially dissolved O_2 acts as a defect by which lattice oxygen migrates. The diffusion of lattice oxygen (D_O) then, can be related to O_2 permeability $(P_{O₂})$,

by

$$
P_{O_2} = D_{O_2} c_{O_2} / 7.6 \tag{1}
$$

London, UK

$$
D_{\mathbf{O}} = D_{\mathbf{O}_2} c_{\mathbf{O}_2} / c_{\mathbf{O}} = 7.6 P_{\mathbf{O}_2} / c_{\mathbf{O}} \qquad (2)
$$

where P_{O_2} is in units of cm³ gas (STP) sec⁻¹ for a 1 mm thick wall, 1 cm^2 area at 10 Torr gas pressure difference; D_{O_2} is the diffusion coefficient of molecular oxygen in cm² sec⁻¹; c_{O_2} and c_{Ω} are the concentrations of oxygen in units of $cm³$ gas (STP) per $cm³$ solid for dissolved O₂ and lattice oxygen in $SiO₂$ respectively.

The oxidation rate of silicon to silica (parabolic regime) is correlated with O_2 permeability [4], because the oxidation proceeds by diffusion of dissolved O_2 through the SiO₂ layer to the SiO₂/Si interface. Dankwerts [5] has shown that parabolic oxidation of surfaces can be described by a rate constant:

 O 1978 Chapman and Hall Ltd. Printed in Great Britain.

D_0, k_0 (cm ² sec ⁻¹)	ϱ $(kcal mol-1)$	\boldsymbol{T} $(^{\circ}C)$	Pressure dependence	Reference
¹⁸ O-tracer diffusion (DO)				
2.0×10^{-9} $(4.4 \pm \frac{14}{3}) \times 10^{-11}$	$29.0 \pm 2.0 \pm 2.0$ 19.7 ± 4.0	850-1250 1150 - 1430	$D_0 \propto p_{\rm O}$	[6] $[7]$
O_2 permeation (P_{O_2})				
	31.4 $22.0*$	$840 - 940$ $900 - 1100$	$P_{\mathbf{O}_2} \propto p_{\mathbf{O}_2}$	[8] $[9]$
O_2 diffusion (D_{O_2})				
2.8×10^{-4}	27.0	$900 - 1100$		$[10]$
	Parabolic rate constant for oxidation of silicon in O_2 (k_{SiO_2})			
2.0×10^{-9} ‡ 2.0×10^{-9}	28.5 31.0	$800 - 1200$ $900 - 1150$	$k_{\rm SiO}$, $\propto p_{\rm O}$, $k_{\rm SiO_2} \propto p_{\rm O_2}$ flow system	$[1]$ [11]
1.0×10^{-10}	23.0	$950 - 1100$	$k_{\rm SiO}$, $\propto p_{\rm O}$, manostatic	[11]
1.2×10^{-9}	27.6	$900 - 1300$	r.f. heating	$[12]$
1.1×10^{-9}	28.0	$900 - 1250$	resistance heating	[12]

TABLE I Comparison between 18 O-tracer diffusion, oxygen permeation, oxygen diffusion in SiO₂ glass, and oxidation of silicon

 $D_{\mathbf{O}}, k_{\mathbf{O}} \triangleq$ pre-exponential factor, $Q \triangleq$ activation energy

*Revised value 27 kcal mol⁻¹ [10].

 \dagger Calculated from data given in [10].

 \pm Calculated from data given in [1].

$$
k_{\mathbf{SiO}_2} = 2D_{\mathbf{O}_2} c_{\mathbf{O}_2} / c_{\mathbf{O}},\tag{3}
$$

provided that the solubility of O_2 is sufficiently small, i.e. $c_{\text{O}_2} \ll c_{\text{O}}^*$; k_{SiO_2} is in units of cm² sec^{-1} .

Equations 1 to 3 show clearly that $D_0, D_0,$ P_{O_2} and k_{SiO_2} are all interdependent and that the equations can be rearranged. For instance, P_{O_2} and k_{SiO} are solely dependent on tracer oxygen diffusivity (D_0) in SiO₂.

$$
P_{\mathbf{Q}_2} = c_{\mathbf{Q}} D_{\mathbf{Q}} / 7.6 \tag{4}
$$

$$
k_{\text{SiO}_2} = 2D_{\text{O}} \tag{5}
$$

Thus tracer diffusion studies are in fact more useful in elucidating oxygen transport processes than was stated by Meek [2].

It follows from Equations 4 and 5 that P_{O_2} , k_{SiO_2} , and D_O should have the same temperature dependence. D_{O_2} is expected to have that same temperature dependence (see Equation 2) but reduced by the heat of solution of O_2 in SiO_2 , which, however, is small [10]. Table I lists data from the literature which show that the four rates do have the same low activation energies (20 to 30 kcal mol^{-1}) within experimental error. Not included in Table I are experiments which show higher activation energies of 71 [13] and 55 kcal mol⁻¹ [3] for tracer diffusion because they were influenced by phase-boundary reactions [6, 7]. Table I also shows that oxygen transport in SiO₂ is directly proportional to $p_{\mathbf{O}_2}$, in marked contrast to the $p_{\mathbf{O}_n}^{-1/2}$ dependence found for oxygen diffusion in K_2O-SiO_2 glasses [14]. The mechanism of oxygen transport must therefore differ when network-modifying cations are present in the $SiO₂$ network. Diffusion in the multicomponent silicates occurs not via interstitially dissolved O_2 molecules as in pure SiO_2 , but via oxygen vacancies [14]. The activation energies of oxygen diffusion in silicate glasses [14] are much higher than that of $SiO₂$ glass because diffusion by oxygen vacancies requires the

 $^{*}c_{\text{O}_2}$ (900 to 1100° C) = (1.7 to 2) × 10⁻³ cm³ gas (STP) per cm³ SiO₂ [10] $c_{\mathbf{O}} = 821 \text{ cm}^3 \text{ gas (STP) per cm}^3 \text{SiO}_2$, i.e. $c_{\mathbf{O}_2}/c_{\mathbf{O}} = 2.1 \times 10^{-6}$

breaking of Si-O bonds. The outlined diffusion mechanism in $SiO₂$ also seems to hold for high temperature (1100 to 1500 $^{\circ}$ C) corrosion of SiC and $Si₃N₄$ during which $SiO₂$ layers form. Activation energies of 20 to 30 kcal mol⁻¹ were observed in the oxidation (parabolic regime) of SiC $[15, 16]$ and around 25 to 35 kcalmol⁻¹ for pure $Si₃N₄$ [17, 18]. The activation energy for the oxidation of impure $Si₃N₄$ increases with impurity content $[19]$. Instead of pure $SiO₂$, the impure $Si₃N₄$ forms silicate glass layers that presumably have higher activation energies of tracer oxygen diffusion.

Acknowledgement

This work was supported in part by NATO Research Grant 1019.

References

- 1. B. E. DEAL and A. S. GROVE, *J. Appl. Phys.* 36 (1965) 3770.
- 2. R. L. MEEK, *J. Amer. Ceram. Soc.* 56 (1973) 341.
- 3. R. HAUL and G. DUMBGEN, *Z. Elektrochem.* 66 (1962) 636.
- 4. K. MOTZFELDT, *Acta Chem. Scand.* 18 (1964) 1596.
- 5. P.V. DANKWERTS, *Trans. FaradaySoc.* 46 (1950) 701.
- 6. E. L. WILLIAMS, J. *Amer. Ceram. Soc.* 48 (1965) 190.
- 7. K. MUEHLENBACHS and H. A. SCHAEFFER, *Can. Mineral* 15 (1977) 179.
- 8. R. M. BARRER, J. *Chem. Soc. (London)* (1934) 378.

Kinetics of solid state NiFe204 formation at 700 to 1400 ~ C

Ferrites are fabricated by heating powders, and many processing variables, e.g. powder purity, size distribution, type, etc., effect the reaction rate $[1]$. Activation energies for NiO + $Fe₂O₃ = NiFe₂O₄$ have varied from 105 and $185 \text{ kJ} \text{ mol}^{-1}$ [2] and 225 to $293 \text{ kJ} \text{ mol}^{-1}$ [3]. In the present work spectrographically pure (J. Matthey) NiO and $Fe₂O₃$ with sieved particle sizes of 15.6 to $33.0 \,\mu m$ were used. Equimolar amounts were mixed by hand for over 1 h, pressed in a steel die without binder or lubrication to form a pellet 10 mm diameter and 4 mm thick, placed in a recrystallized alumina boat, and fired in air within a temperature variation of $\pm 3^{\circ}$ C. The amount of

- *9. F.J. NORTON, Nature* 191 (1961) 701.
- 10. F. J. NORTON, Transactions of the VIII Vacuum Symposium and 2nd International Congress (Pergamon Press, New York, 1962) p. 8.
- 11. P. J. BURKHARDT and L. V. GREGOR, *Trans. Met. Soc. AIME* 236 (1966) 299.
- 12. A. G. REVESZ and R. J. EVANS, *J. Phys. Chem. Solids* 30 (1969) 551.
- 13. E. W. SUCOV, J. *Amer. Ceram. Soc.* 46 (1963) 14.
- 14. H. B. MAY, I. LAUDER and R. WOLLAST, *ibid.* 57 (1974) 197.
- 15. P. J. JORGENSEN, M. E. WADSWORTH and I. B. CUTLER, *ibid.* 42 (1959) 613.
- 16. E. GUGEL, H. W. HENNICKE and P. SCHUSTER, *Ber. Dr. Keram. Ges.* 46 (1969) 481.
- 17. P. GOURSAT, P. LORTHOLARY, D. TETARD and M. BILLY, Proceedings of the Seventh International Symposium on the Reactivity of Solids (Chapman and Hall, London, 1972).
- 18. E. FITZER and R. EBI, "Silicon Carbide-1973" (University of South Carolina Press, Columbia, SC, 1974).
- 19. S.C. SINGHAL,J. *Mater. Sci.* 11 (1976) 500.

ReceiVed 19 September and accepted 1 November 1977

> H. A. SCHAEFFER *Institut for Werkstoffwissensehaften (Glas und Keramik), Universitat Erlangen-Niirnberg, Erlangen, Germany* K. MUEHLENBACHS *Department of Geology, University of Alberta, Edmonton, Alberta, Canada*

 $NiFe₂O₄$ formed was measured by the force in a magnetic field. Chamfered pole pieces of an electromagnet gave a region of constant field gradient and a double pan chemical balance was used to measure the force. A phosphor bronze cantilever was used to prevent the specimen being attracted to either pole. Its stiffness could be neglected during weighing when the specimen returned (checked by a cathetometer) to a null position. A Cu specimen holder was used to hold about 100mg powdered sample. The force per unit mass of sample versus mol% NiFe₂O₄ in a range of NiO, $Fe₂O₃$ and NiFe₂O₄ mixtures was linear and used to determine the unknown amount of NiFe₂ O_4 in a sample.

Compacting pressures in the range 10 to 100 MPa did not affect the amount of NiFe₂O₄ *9 1978 Chapman and Hall Ltd. Printed in Great Britain.*